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Abstract 

We study, in this work, a system of differential equations related to phosphorus 
concentration in shallow lakes. This is a nonlinear system of reaction diffusion 
equations with moving boundary. We obtain the existence of solutions of the 
system by establishing a prori estimates. 
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1. Introduction 

Consider in a lake where the water contains certain amount of 
phosphorus carried in by polluted upstream water or released from the 
residuals of dead benthos. Microorganism (like algae) eat phosphorus and 
die. In the process of decaying the dead organism, large amount of oxygen 
in the water is used. This process is called the eutriphication. It is obvious 
that fast eutriphication in a lake or a reservoir will affect the water 
quality. Eutriphication control has gained more and more attention 
recently. Contamination generated from surrounding industrial 
development and other human activities introduces large amount of 
nutrients into the water and thus, accelerates the eutrophication process 
and affect the public water resources. It has been found that phosphorus 
is the indicator of eutrophication. It is therefore crucial to monitor and 
control the level of phosphorus in reservoirs or lakes. Very recently, the 
effect of phosphorus concentration on reservoirs and other water bodies 
have been studied in [11], [12]. 

In this work, we study the concentration of phosphates in shallow 
lakes or reservoirs by considering different factors that affect the 
phosphorus concentration. The degree of pollution of the water depends 
on the concentration of phosphorus in the polluted water flowing in, the 
concentration of phosphate in the sediment at the bottom, the boundary 
of the water body, and many other factors. With the knowledge of the 
roles of these factors, we can better control and predicate the quality of 
the water. 

Let {( ) ( ) }0,,:,, 23 >∈=∈ + tRyxtyxRQ  be a smooth region with 

a lateral surface ( ) ,0,,: =∑ tyxp  a top { }TtQT =Ω ∩:  and a bottom 

{ }.0:0 =Ω tQ ∩  Denote ( )tyxc ,,1  as the concentration of phosphate in 

the lake at location ( )yx,  and time ( )tyxct ,,, 2  as the concentration of 

phosphate at the top layer of the lake bottom at ( ),,, tyx  ( )tyxc ,,3  as 

the concentration of algae that absorbs phosphate. We also denote ( )yxu ,  
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as the speed of water flowing in the x direction, ( )yxv ,  as the speed of 

water flowing in the y direction, sv  as the rate at which phosphate sinks, 

rv  as the rate at which the lake bottom releases phosphate, bv  as the 

rate at which the top layer of lake bottom gets buried by new dirty in the 
water and newly died micro-plants, and pv  as the rate at which the 

micro-plants sink. Here pbrs vvvv ,,,  are assumed to be independent of 

( )., yx  Then 321 ,, ccc  satisfy the following reaction diffusion equations: 
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 (1.1) 

subject to boundary conditions 

( ) ( ) ( ) ,,, 0,,10,,1 == = tyxptyxp tyxc ν   (1.2) 

( ) ( ) ( ) ,,, 0,,20,,2 == = tyxptyxp tyxc ν   (1.3) 

and initial conditions 

( ) ( ) ( ) ( ) ( ) ( ).,0,,,,0,,,,0,, 303202101 yxcyxcyxcyxcyxcyxc ===  

Here 302010 ,, ccc  are initial densities, 21, νν  are known functions, 

12
1

ckc
cc mg +

= ν  is the growth rate for some positive constants 

dm ck,,ν  is the death rate of microorganism, pcα  is the 

phosphate/carbon ratio in the water, 1h  denotes the depth of mud 

containing phosphate at the bottom of lake, h denotes the average depth 
of the lake, and 0v  is the rate at which the organism sinks. 
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Consider a related linear system in ∗∗
21 , cc  
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subject to boundary conditions 

( ) ( ) ( ) ,,, 0,,10,,1 ==
∗ = tyxptyxp tyxc ν   (1.4) 

( ) ( ) ( ) ,,, 0,,20,,2 ==
∗ = tyxptyxp tyxc ν  (1.5) 

and initial conditions 

( ) ( ) .00,,,00,, 21 == ∗∗ yxcyxc  

We can homogenize the boundary conditions (1.2), (1.3) by letting =1w  

.,, 3322211 cwccwcc =−=− ∗∗  Therefore, we can assume that ( )tyx ,,1ν  

( ) .0,,2 == tyxν  

2. A Vector Operator of Variations 

Following Lions’ notations [6], we introduce a vector operator. First, 

denote a bounded open set in nR  as D. Denote the number of derivatives 
of u (with respect to x) with order less than or equal to 1−m  as ,1N  and 

the number of derivatives of u (with respect to x) with order m as .2N  

Define a family of functions ( )ll
i xA ξξηηα ,,;,,, 11 ""  on ×× 1NRD  

,,,2,1,221 liRRR NNN "…… =××××  with the following properties: 

(1) ( )ll
i xADx ξξηη∈∀ α ,,;,,,, 11 ""  are continuous on 1NRD ×  

;,,2,1,221 liRRR NNN "…… =×××××  
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(2) ( ) iNNNN
ll ARRRR α×××××∈ξξηη∀ ,,,;,, 221111 ……""  

( )llx ξξηη ,,;,,, 11 ""  is measurable in x; 

(3) There exists a function ( ) ( )DLxk p′∈  and a constant C such that, 

for all ,,,2,1 li "=  

( ( )).11
1

11
1 xkCA p

l
pp

l
pi +ξ++ξ+η++η≤ −−−−

α ""  

Let { } { } ( ) ( ,,,,,,,,: 11
αα

−β =ξη=δ=β= AxAuDDuuukDuD mk "  

),,,2 lAA αα "  where .111 =
′

+ pp  It can be shown that if ∈luuu ,,, 21 "  

( ),, DW pm  then 

( ) ( ) ( ).,,,,,, 11 DLDLuDuDuuxA pp
l

mm
l

′′
α ××∈δδ """  

Therefore, ( ) ( ) ( )×∈==∀ DWwwwwuuuu pm
ll

,
2121 ,,,,,,, "" ( )DW pm,  

( ),, DW pm××"  we define operator 

( ) ( ( ) """ +δδ= α
α

≤α
∫∑ 111

1 ,,,,,,, wDuDuDuuxAwuQ l
mm

l
Dm

 

( ) ) .,,,,,, 11 dxwDuDuDuuxA ll
mm

l
l α
α δδ+ ""  

For a close subspace V of the interior of ( ) ( ) ××× "DWDW pmpm ,,  

( ),, DW pm  the mapping ( )wuQw ,→  is linear and continuous in V. This 

mapping defines an operator ( ) ,VuA ′∈  the dual space of V, in the 

following way: 

( ) ( )( ) .,,, VwwuAwuQ ∈∀=  

Therefore, for ( ) ( ),DDDD ××∈ "u  vector operator ( )uA  can be 

expressed as 

( ) ( )( ( ) ,,,,,,,,1 11
1 """ l

mm
l

m
uDuDuuxADuA δδ−= α

αα

≤α
∑  
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( ) ( )).,,,,,,1 11 l
mm

l
l uDuDuuxAD "" δδ− α

αα  

Theorem 2.1. In addition to the above assumptions on ,,, 21 "αα AA  

,lAα  we further assume that, for any ,Vu ∈  

( ) ;,,
∞→∞→ V

V
uasu

uuQ  (2.1) 

for almost all Dx ∈  and bounded ,η  
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(2.2) 

and for all η  and ,,,11
∗∗ ξ≠ξξ≠ξ ll"  

( ( ) ( )) ( ) ( ( )ξη++ξ−ξξη−ξη α
=α

∗
αα

∗
αα

=α
∑∑ ,,,,,, 1

11
11 xAxAxA

mm
"  

( )) ( ) .0,, 11
1 >ξ−ξξη− ∗

αα
∗

α xA   (2.3) 

Then, for any ,Vf ∈  there exists Vu ∈  such that ( ) .fuA =  

Proof. This result is a straight forward generation of Theorem 2.8 in 
[6] (page 182).   

3. Existence Results 

Rewrite the system (1.1) as 

( ) ( ) ( ) 2
1
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1 ch
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pc  (3.1) 

Denote ( ).,, 321 pccccu α=  System (3.1) can be expressed as 

,321 FuAuAuAut =+++   (3.2) 
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We need the following theorem from [6]: 



HUIHUI DAI et al. 242

Theorem 3.1. Suppose that V is a reflexive Banach space and that it 
is strictly convex with respect to a norm and its dual space V ′  is strictly 
convex with respect to the dual norm. Denote L as a maximal monotone 
linear operator: ( ) VVLD ′→⊂  and Λ  as a psuedo-operator: ,VV →  

such that ( )
∞→

Vu
uLmu,  as .∞→Vu  Then ,Vf ′∈∀  there exits 

( ),LDu ∈  such that .fuLu =Λ+  

Take ( )TtttL
∂
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∂
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∂
∂= ,,  and { ( ) }.0,: 1 =∈= ∑vQHvvE  Let 

( ).2 QLEEV ××=  For ( ),,, 321 pccccu α=  define 

( ) { }.0,0,: 3 ==′∈∈= ∑=
∗ cuVuVuLD Ttt  

It is easy to see that ( )( )0,.i.e0 ≥≥ uLuL  and that (( ) ).0,0 ≥≥ ∗∗ uuLL  

It can also be shown that ∗LL,  are maximal monotone operators. Define 

operator A as follows: 

( )( ) ( ),,, wuQwuA =  

where the bilinear functional Q is defined in (3.3). Similarly, with 
( )21 , cccg  replacing ( )21, cccg  in (3.3), we can define a bilinear 

functional ( )wuQ ,~  and an operator B can be defined as 

( )( ) ( ).,~, wuQwuB =  

We now check the conditions in Theorem 2.1 for B. For ( ),,, 321 cccu =  

( ) ( ),,,,,, 321321 wwwwvvvv ==  we decompose ( )( ) ( )vuBvuB ,, 1=  
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( ( )) ,02,2
1
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there exists a constant c such that 

( )( ) ., 2
VucuuB ≥   (3.7) 

Condition (2.1) is then satisfied. 

Next, we have 

( ) ( )

[( ) ( ) ]2
1

2
1 2

22
2
21

2
12

2
11

2
222

2
21212101211110111

2 ξ+ξ+ξ+ξ

ξ+ξ+ξη−ξ+ξη−ξ DDvDuD  

( ) ( )

[( ) ( ) ]
.

2 2
1

2
1

21
2
22

2
21

2
12

2
11

2
1

2
02

12
1

2
02

12
22

2
212

2
12

2
111

ξ+ξ+ξ+ξ

η−η−ξ+ξ+ξ+ξ
≥

vuDD DD  (3.8) 

For bounded ,, 00 vu  and ( )21, ηη=η  in a compact subset of ,2R  it is 

easy to see that as, ( ) ( ) ,, 2
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expression (3.8) approaches infinity. Therefore, condition (2.2) is 
satisfied. 

Condition (2.3) is obviously satisfied. 

Hence, it results from Theorem 2.1. 

Theorem 3.2. Suppose that the velocity of water flow is small along 
-x axis and -y axis and that conditions (3.4), (3.5), and (3.6) are satisfied, 

for ( ) ,,, 321 Vffff ′∈=  there exists, a unique solution of the initial-

boundary value problem 

( ) ,fuB =   (3.9) 

( ),,, 3020100 cccut ==   (3.10) 

  ( ) .0,,,021 === tyxPwhencc   (3.11) 
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Since 302010 ,, ccc  denote initial phosphorus densities and are 

therefore nonnegative, we can show that the solution ( )321 ,, ccc  is 
positive. For this, we need the following lemma: 

Lemma 3.1 (Comparison Lemma [6]). Given m uniformly parabolic 
operators 
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Theorem 3.3. Under the assumptions in Theorem 3.2, the solution of 
the initial-boundary value problem 

( ) ,fuB =   (3.12) 
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( ) ,0,,,021 === tyxPwhencc   (3.14) 

is nonnegative, .0≥u  
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It then results from Lemma 3.1 that 

.0,02 2211 >ε+=>ε+= BtBt ecvecv  

Sending ,0→ε  we have also .0,0 21 ≥≥ cc   

Finally, we have 

Theorem 3.4. Suppose that the velocity of water flow is small along 
-x axis and -y axis and that conditions (3.4), (3.5), and (3.6) are satisfied, 

for ( ) ,,, 321 Vffff ′∈=  there exists, a unique solution of the initial-

boundary value problem 

( ) ,fuA =   (3.19) 

( ),,, 3020100 cccut ==   (3.20) 

( ) .0,,,021 === tyxPwhencc   (3.21) 

Proof. Since the solution obtained in Theorem 3.2 is positive, ( ,1ccg  

) ( )., 212 cccc g=  Therefore, ( ) ( ).uBuA =    
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Remark 1. In reality, condition (3.4) is satisfied, when the rate at 
which phosphate sinks is greater than the rate at which the sediment 
releases phosphate, and when the speed of the water flow and the rate at 
which the organisms die are slow. 

Remark 2. Condition (3.5) is satisfied, when the rate at which the top 
layer of lake bottom gets buried by new dirt in the water and by newly 
died micro-plants is relatively large. 

Remark 3. Condition (3.6) is satisfied, when the depth of the 
sediment is small. 
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