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1. Introduction

Consider in a lake where the water contains certain amount of
phosphorus carried in by polluted upstream water or released from the
residuals of dead benthos. Microorganism (like algae) eat phosphorus and
die. In the process of decaying the dead organism, large amount of oxygen
in the water is used. This process is called the eutriphication. It is obvious
that fast eutriphication in a lake or a reservoir will affect the water
quality. Eutriphication control has gained more and more attention
recently. Contamination generated from surrounding industrial
development and other human activities introduces large amount of
nutrients into the water and thus, accelerates the eutrophication process
and affect the public water resources. It has been found that phosphorus
is the indicator of eutrophication. It is therefore crucial to monitor and
control the level of phosphorus in reservoirs or lakes. Very recently, the
effect of phosphorus concentration on reservoirs and other water bodies
have been studied in [11], [12].

In this work, we study the concentration of phosphates in shallow
lakes or reservoirs by considering different factors that affect the
phosphorus concentration. The degree of pollution of the water depends
on the concentration of phosphorus in the polluted water flowing in, the
concentration of phosphate in the sediment at the bottom, the boundary
of the water body, and many other factors. With the knowledge of the
roles of these factors, we can better control and predicate the quality of

the water.

Let @ € R? = {(x, v,¢): (x, y) € R%, t > 0} be a smooth region with
a lateral surface ) : p(x, y, 1) = 0, a top Qp : @ N {t = T'} and a bottom
Qp : @N{t = 0}. Denote ¢;(x, y, t) as the concentration of phosphate in
the lake at location (x, y) and time ¢, co(x, v, t) as the concentration of

phosphate at the top layer of the lake bottom at (x, y, ¢), cs(x, y,t) as

the concentration of algae that absorbs phosphate. We also denote u(x, y)
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as the speed of water flowing in the x direction, v(x, y) as the speed of
water flowing in the y direction, vy as the rate at which phosphate sinks,
v, as the rate at which the lake bottom releases phosphate, v, as the

rate at which the top layer of lake bottom gets buried by new dirty in the

water and newly died micro-plants, and v, as the rate at which the
micro-plants sink. Here vy, v,, vy, v, are assumed to be independent of

(x, ¥). Then ¢;, cq, c3 satisfy the following reaction diffusion equations:

oc oc oc v v
T~ DiVer v u gt ruTah e e - phey + cgapecy — cqapecy = f,
0co DoVeg + ey + 90 ¢y Vs Y0 G o0
ot 2V L2 h1 2 hl 2 A 1 hl pct3 — Y
0630 pe CoOlpeCs + CaOl peC + 204 3 =0
- 3 3 T3 3 =Y
ot g% pc pe hy = PC
(1.1)

subject to boundary conditions
€1l pe, y,0p-0 = V106 22 Dlpe, 40000 (1.2)

c2|p(x,y’t):0 = U2(x’ Y, t)lp(x,y,t):O’ (13)
and initial conditions
¢ (x, 5, 0) = crp(x, ), calx, ¥, 0) = cgp(x, ¥), c3(x, ¥, 0) = cgp(x, ¥).

Here ¢, c9g, c39 are initial densities, v{, v9 are known functions,

i

Cy = Vpy ——
g "M keg + ¢y

is the growth rate for some positive constants

V., kB, cg 1s the death rate of microorganism, o pe is the

phosphate/carbon ratio in the water, h; denotes the depth of mud
containing phosphate at the bottom of lake, A denotes the average depth

of the lake, and v is the rate at which the organism sinks.



238 HUIHUI DAI et al.

Consider a related linear system in c;, c;

aCik—DVc*+uaciﬁ+vacik+Usc*—v'"c*—O
o0 1 ox oy  hY m 27

60; * Up  « v * v *
=2 _DoVco +-2co +-Lcy —=2>c; =0,
ot pVep ¥y G2t g Ce mga

subject to boundary conditions

*
I pe, yt)0 = V1 25 Olpe, 5, 0-00

*
¢l pe,y.0=0 = V2@ 25 D),y 010

and initial conditions

ci(x, y,0) =0, cy(x, y, 0) = 0.

(1.4)

(1.5)

We can homogenize the boundary conditions (1.2), (1.3) by letting w; =

€] —¢f, Wy = cy —Cy, Wy = cg. Therefore, we can assume that vy(x, y, t)

= vq(x, y,t) = 0.

2. A Vector Operator of Variations

Following Lions’ notations [6], we introduce a vector operator. First,

denote a bounded open set in R" as D. Denote the number of derivatives

of u (with respect to x) with order less than or equal to m —1 as Np, and

the number of derivatives of u (with respect to x) with order m as Ny.

Define a family of functions A’ (x,ny, - &y, &) on D x RM x

xRN xRNz RNQ, i =1, 2, -, 1, with the following properties:

(1) Vx € D, A(il(x, M, > N &1, o+, &) are continuous on D x RM

x...x RN x RNz ><...><RN2,i:1, 2, -, I
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(2) v(n]_? ) nl7 al; R E.;l) € RNl XX RNl x RN2 X ... X RN25 A&

(x, Mg, ===» M5 &1, -5 €;) 1s measurable in x;

(3) There exists a function k(x) e L” ' (D) and a constant C such that,
foralli =1, 2, ---, [,

AL] < Cm P77 (8 P74 [P+ k().

Let Dfu-= {D[3 Bl = &}, du = {u, Du, -, D™y}, Ay(x, m, &) = (Aé,

1

Ag, e Aé), where — + > = 1. It can be shown that if wq, ug, -+, u; €

==

W™ P(D), then

A, (x, duq, -+, du;, D™uy, -+, D™u;) € Lp'(D)x cex Lp,(D).
Therefore, Vu =(u,ug, -, u;), w=(wy,wy, -, w;)e W"P(D)x W™P(D)
x---x W™ P (D), we define operator

Qu, w) = Z j (Aé(x, duy, -+, du;, D™uy, -+, D"u;)D%wy + -+

loj<m
+ AL(x, uy, -+, 81y, D™y, -+, D™uy)D%w; )dx.

For a close subspace V of the interior of W™ P?(D)x W™P?(D)x - x

W™ P(D), the mapping w — Q(u, w) is linear and continuous in V. This
mapping defines an operator A(u) € V', the dual space of V, in the

following way:

Qu, w) = (A(u), w), VYwelV.

Therefore, for u e D(D)x---x D(D), vector operator A(u) can be

expressed as

Au) = Z ((—1)‘“‘D‘°“Aé(x, Suy, -+, duy, D™uy, -+, D™uy), -,

lof<m
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(—1)‘“‘D‘Q‘Aé(x, Suy, -+, duy, D™uy, -, D™y ))

Theorem 2.1. In addition to the above assumptions on Aé, Ag, e

A(Zx, we further assume that, for any u € V,

Qu, u)

el

— o, as |uly = o 2.1)

for almost all x € D and bounded n,

Z\a\ﬁm A (e, g+ + A(Zx (o, M, £

& |+ g+ [Eg [P+ [P

> was|&|, &) =

(2.2)

and for all n and & # &7, -+, & # &7,

Z (Aé(x’ n, é)_ A(lx(x’ n, ‘:*))(E.slon - Eja)"' et Z (A(%L(x’ n, &)

lo=m la]=m

~ Ay (x,m, €)) (1 —&1g) > 0. (2.3)
Then, for any f € V, there exists u € V such that A(u) = f.

Proof. This result is a straight forward generation of Theorem 2.8 in
[6] (page 182). O

3. Existence Results

Rewrite the system (1.1) as

oc 0 0 v v
a—tl—DIVcl +a(ucl)+@(vcl)—(ux + 0y —75)01 —i@

+Cg0lpeC3 = €40 peC3 = [,

802
2 _ D,Vco —
ot 2V Co

Vg vp U, Vo
¢ +(—+-L)g ——a,.cqg =0,
h 1 ( hl hl ) 2 hl pct3
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803(1 v
8tpc — Cg0lpcC3 + CqlpeCa + %apc@, =0. (3.1)
Denote u = (¢, cg, c30p ). System (3.1) can be expressed as
up + Aju + Asgu + Asu = F, (3.2)
where
-D;v 0 0 Jd, 0 O o, 0 0
A =] 0 -DyVv 0 |,43=|0 0 0|x+|0 0 0[x¢y,
0 0 —Cg 0O 0 O 0O 0 O
+
U}f Uy — Uy U’hlvb Cg —Cq f
_Us Y% | Y Y -
Ag = s Rt | F=|o]
0 0 cq +0 0
u 0 0 v 0 0
=10 v  0l,g=l0 w«u o0
0 0 1 0 0 1

For w = (w;, wy, wy )’ , define a bilinear functional:

oc ow oc ow oco Ow
Q(u, w):J‘Q((Dla—;—ucl)a—xl'f'(l)la—;—vcl)a—yl"r 26_3?8_3(;2

Ocg Owsg v v
25y oy [(Ts — Uy — Uy o - h; cg + (cg = cq)otpecs Jwy
v v v
+ [—TSCI "r(h—li"‘i )C2 _ﬁc3]w2

+(~cg +cq + 2—(1) )ap003w3) dx dy dt. (3.3)

We need the following theorem from [6]:
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Theorem 3.1. Suppose that V is a reflexive Banach space and that it
is strictly convex with respect to a norm and its dual space V' is strictly
convex with respect to the dual norm. Denote L as a maximal monotone

linear operator: D(L) c V — V' and A as a psuedo-operator: V. — V,

such that Lmu, u) - as |ul, -« Then VfeV', there exits

ety
u e D(L), such that Lu + Au = f.
_(2 9 9oyr — iy 1 -
Take L_(Gt’at’at) and E={v:veH(Q),vy =0} Let
V = ExE x I[3®). For u = (¢, s, €30, ), define

D(L*): {u cV: u; € V’, ult:T = O, C3|z = 0}

It is easy to see that L > 0(i.e.(Lu, u)>0) and that L* > 0((L'u, u) > 0).

It can also be shown that L, L' are maximal monotone operators. Define

operator A as follows:
(Aw), w) = Qu, w),

where the bilinear functional @ is defined in (3.3). Similarly, with

cg(lcr]s |eg|) replacing cg4(cy, cg) in (3.3), we can define a bilinear

functional é(u, w) and an operator B can be defined as

(Bw), w) = Qu, w).
We now check the conditions in Theorem 2.1 for B. For u = (c;, ¢9, c3),

v = (v, vg, v3), w = (wy, wy, wy), we decompose (B(u),v)= By(u, v)

+By(v), where

oc ow oc ow
(Bulas o), w) = [ (DG —ugm) G+ (Dy G —woea) 5L
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v
(By(w) w) = [ 15~ uor —uoy)er =30 + (egler]. Jea]) - ca)epees ey

_Ys Y  Urye _Ys
+ hcl+(h1+h1 )ea h103]w2
+(eglle], leal) + cq + 22 >apcc3w3)dx dy dt.
It is obvious that B(u) = B(u, u). Let us check (2.1).

(B, )= [ (D + (P e (B2 P o (22 2)
Ug 2 Up Uy 2
+ (=2 —uge —ugy )i + (=2 +-L)cs5(cy —cy(lcq], |e
(% - e~ oy e + (24 2 )eBleq - el ea)
+U—O)OL 2 U (acl )2 UO(%)Z Ur
v v
+(cg(ler], |eal) = g o pecres —Tsclcg —h—20203jdx dy dt

2 [ (DR P (5P D G2 + (2 7)

v c v u Ug c 9 v v v
p( o 0 Y Zd 2 (2 r s

°h T2 T2h 2 2 2 h ' 2h  2h
)3 + (l(cd —cg(ley], Jea])) Yo )ocpccgjdx dy dt.
2h 2 2y
, le1| :
Since Cg =V W > Vmp > 0, if
UTS_Z_;_UOx_UOy_Cd > 0, (3.4)

2wy U Vg Vo
o b 0, (3.5)
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1 UO
§(Cd —Cg(lcll, |Cz|))+% > O, (36)
there exists a constant ¢ such that
(B), u) = d|ul- (3.7)

Condition (2.1) is then satisfied.

Next, we have

(D111 — uony 1 + (D1&1o — vom iz + Dog31 + DoEds

A(ed + % )0 + (E3) + 37 ]

2 .2 2 .2 2.2 2.2
Dy(&11 +&12) + Da(E31 + E32) - ﬁu(ml - ﬁvom

of(ed +e%)7 + (3 +e3)2]

(3.8)

For bounded ug, vy, and n = (n;, ny) in a compact subset of RZ% it is

2 2\ 2 2 L
easy to see that as, |&] = (§71 +&i2)2 — o, &g = (E31 + E32)2 — o,
expression (3.8) approaches infinity. Therefore, condition (2.2) is

satisfied.
Condition (2.3) is obviously satisfied.
Hence, it results from Theorem 2.1.

Theorem 3.2. Suppose that the velocity of water flow is small along

x-axis and y-axis and that conditions (3.4), (3.5), and (3.6) are satisfied,
for f=(fi, fa, f3) € V', there exists, a unique solution of the initial-

boundary value problem
Bu) = f, (3.9)
U0 = (€10, €20, €30 ), (3.10)

¢ =c9 =0, when P(x, y,t)=0. (3.11)
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Since c¢qg, €9, 39 denote initial phosphorus densities and are
therefore nonnegative, we can show that the solution (c;, ¢g, c3) is

positive. For this, we need the following lemma:

Lemma 3.1 (Comparison Lemma [6]). Given m uniformly parabolic

operators

n
0
Liza—Zak](x )8 rr Zb )(xt m=1,2 -, m,

k,j=1

and a matrix (Rj),., such that hj; <0 for i = j,i,j=1,2, m, if,

foru; e C(Q),i=1,2 -, m
1. Lul+z 0(0ry0),i1=1,2, -, m

u(x, 0) = (uy(x, 0), ug(x, 0), -+, uy(x, 0)) <0 (or ,0) for x e |O
My =QN{t =0}; and

3. uls <0 (or;0), then u(x, t) < 0 (or ;0), for (x,t) € Q.

Theorem 3.3. Under the assumptions in Theorem 3.2, the solution of

the initial-boundary value problem

B(u) = f, (3.12)
w—o = (105 €205 €30); (3.13)
¢; =cg =0, when P(x, y,t) =0, (3.14)

is nonnegative, u > 0.

€
Proof. Let vy = ¢ +§eBt, Uy = Cg + cel, vg = cg. Then v = (v, vy,
vy ) satisfies
ovy ovy v v
L _DVu, +uy =L g =+ Ev - Lo
ot 1vVYl 0 0 P h 1 hl 2

v v B
=f+(=-=L )SeBt + B2 Bt (Cg(lcll, |02|)_Cd)0°p003’ (3.15)
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v
W—ngvz +(ﬁ——;)vz —TSUI
U Ur _Us Bt Yo Bt
(26 L %r s = B Nl
(h1 + o oh Jee' + n o pecg + eBe™, (3.16)
Ocgol v
atpc = (cg(ler], lea]) —cq - % )0 peC3- (3.17)

Since c3g 2 0, (3.17) implies that c3 > 0. For large enough B, we have

from conditions (3.4), (3.5) that

ov ov ov v v
a—tl—DIVl}l +u0—;+voa—yl+rsvl —h—ZUQ > O,
ov v v v
a—f—DZva +(h—l]).+h—1)l)2 _Tsvl > 0. (318)

It then results from Lemma 3.1 that

B

€
= tge L5009 = ¢y +eeP > 0.

Y
e
U

Sending ¢ — 0, we have also ¢; > 0, ¢y

Finally, we have

Theorem 3.4. Suppose that the velocity of water flow is small along
x-axis and y-axis and that conditions (3.4), (3.5), and (3.6) are satisfied,
for f=(fi, fa, f3) € V', there exists, a unique solution of the initial-

boundary value problem

Au) = f, (3.19)
w—o = (€10, €205 €30)s (3.20)
¢ =c9 =0, when P(x, y,t)=0. (3.21)

Proof. Since the solution obtained in Theorem 3.2 is positive, cg(|c; ],

lea]) = cg(|cr]s |eg|). Therefore, A(u) = B(w). O
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Remark 1. In reality, condition (3.4) is satisfied, when the rate at

which phosphate sinks is greater than the rate at which the sediment

releases phosphate, and when the speed of the water flow and the rate at

which the organisms die are slow.

Remark 2. Condition (3.5) is satisfied, when the rate at which the top

layer of lake bottom gets buried by new dirt in the water and by newly

died micro-plants is relatively large.

Remark 3. Condition (3.6) is satisfied, when the depth of the

sediment is small.
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